EDDY CURRENTS IN A OONDUCTING SPHERE N 3B D
. &/l 02—
John Bergman and David Hestenes ‘éf ‘?7

Arizona State University
(October 1986)

Abstract

This report analyzes the eddy currents induced in a solid conducting
sphere by a sinusoidal current in a circular loop. Analytical expressions for
the eddy currents are derived as a power series in the vectorial displacement
of the center of the sphere from the axis of the loop. These are used for
first order calculations of the power dissipated in the sphere and the force
and torque exerted on the sphere by the electromagnetic field of the loop.
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E - Electric Field

B > Magnetic Induction
A » Vector Potential
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u, - Permeability of free space
§ - Skin depth
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T -

e -
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Introduction

This report is an extension of research by David Sonnabend [1,2] on the
control of suspended objects by eddy current forces, and it was carried out at
his suggestion. The results are potentially useful in the design ?f a quasi
drag free gradiometer to be used in artificial space satellites.

In this sﬁudy we are concerned with effects on a conducting sphere of the
electromagneﬁicAfield produced by a steady state alternating current in a
circular coil. The oscillation field induces eddy currents in the conductor
which dissipate power and interact with the field to produce a force and
torque on the sphere. Our objective is to derive analytical expressions
describing these effects. The central task is to solve the steady state
electromagnetic boundary value problem for a conducting sphere in the
oscillating field of the current loop. The problem was solved some time ago
for the special case where the center of the sphere lies on the axis of the
loop [3,4). Tegopoulos and Kriezis [4] give a valuable survey of analytical
work on problems of this type. Hannakam [5] has found an elegant closed
solution to our general problem in terms of an integral over the loop. His
result is summarized in Appendix M of this report. However, after studying
the difficultles 1N evaiudaiiuy iis sucegios, = 22c°idad +hat it wmld be more
practical to solve the problem ab initio by a different method. We studied a
variety of promising approaches. Expansions in terms of Lame’ polynomials (6]
seemed most promising because these functions possess both the symmetries and
asymmetries of our problem. Unfortunately, the mathematical theory of Lame’
polynomials is not sufficiently well developed to make all the necessary
calculations easy. We finally settled on expansions in terms of spherical
harmonics in large measure because many theorems about these functions are
available to facilitate calculations. This enabled us to find a practical (if

not optimal) solution to our problem.




To make our boundary value problem well defined and analytically

tractable, we adopted the following idealizations of the physical situation:

1)

2)

3)

4)

5)

6)

7)

the coil is replaced by a single, circular current loop. If the coil
needs to be more accurately modelled, this can be accomplished by
considering it as a series of current loops and supercomposing the
indivi?uql solutions.

The current in the loop is taken to vary sinusoidally in tiﬁe. That is

I =1Icosut=Re {Ie“")}
I ,w are real constants.
The propagation of the fields is regarded as instantaneous, that is,
the fields change slowly with respect to their propagation time to
points within the domain of this problem. Thus, all points in the
conductor "see" a field of the same phase at the same instant in time,
and the displacement current can be neglected.
The conductor is isotropic, homogeneous, and non-magnetic with a
relative permeability of one. Hence, within it Ohm’s law (J = oE)
applies and hysteresis can be ignored.
The conductor is modelled as a solid sphere. ‘INiS MOUEL ib vaiic cwe «
spherical shell as long as the skin depth is small relative to the
thickness of the shell.
The displacement of the center of the sphere from the axis of the loop
is considered small compared to the radius of the sphere. This allows
the use of an expansion about a position on the axis of the loop.
Transcient effects are ignored and only steady state solutions are

considered.




I. The electro-magnetic vector potential

The first thing we do is introduce the idealizations of our problem into
Maxwell’s equations to derive a boundary value problem for the vector
potential A. “Neglecting the displacement current, and considering materials

with relative permeability of one, Maxwell’s equations are:

(1) V-E = p/c,
(2) VxB = 4y J
9B
(3) XE » = —
ot
(4) VB =0
From V-B = O, it follows that B can be written as the curl of the vector
potential A.
(5) B = UxA
The condition V:A = O can also be imposed to determine A uniquely.

Substituting equation (5) into equation (3) yields

3 oA
(6) XE = — ——— (VXA) = ¥ x (- —)
ot oA
en uwa ran take
oA
(7)) E= - — .

ot
Assuming Ohm’s law, J = oE and equation (7) yields

oA
(8) J = ~¢o

ot

We assume that the sources of the field are stationary and the field
propagates instantaneously so it must have the same time dependence as the

current loop. Accordingly, the vector potential can be written




A (r,t) =A (r) et

where only the real part is of physical interest. The eddy current density
then is proportional to the vector potential

(9) J = =iwoA.

Substituting equations (5) and (9) into equation (2) we obtain

(10) Vx(VXA) = iy weA = K’A '
where k = iy wo. By virtue of the vector identity

Ux(VxA) = V(V-A) - VA
and the relation V:-A=0, equation (10) reduces to Helmholz’s equation

(11a) VA = k’A
inside the sphere, and Laplace’s equation

(11b) A =0
immediately outside the sphere where the conductivity is zero. The solutions
to equations (lla) and (11b) must be matched at the boundary of the sphere.
According to Smythe {3, p. 305] the following boundary conditions must be
satisfied.

(1) A is continuous across the boundary

~a e

(2) The NOIMAL COMPOINEIIL UL & is wwsicaniecos 227777 +ha handary
(3) The tangential component of B = uB is continuous across any boundary.
For this case y = p,  inside the sphere as well as outside of it so the
tangential componet of B is also continuous across the boundary.
Thus,

(12a) A |, = A |

I=a r=a

(12b) WxA | _, = 9xA | _,,
where A is the total vector potential outside the sphere and A, is the total

vector potential inside the sphere.
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II. Calculating the vector potential of a current loop with respect to an

origin off axis to the loop.

To calculate the vector potential of a current loop, it is convenient to
choose an origin on the symmetry axis of the loop. However, in calculating
the total vector potential in the sphere, the symmetry of the sphere is most
easily exploifed by using an origin at its center. To benefit from both
choices of or.:i.gin, the vector potential of the loop is first calcuiated with
respect to an origin on the axis of the loop and then is expanded about the
center of the sphere. This method would be inappropriate for large
displacements of the center of the sphere from the axis of the loop. The
geometrical parameters in our problem are shown in figure 1.

The vector potential of a line current is found from

M, 1dl
NN

where I is the current and can depend on time,
dl = d1 1 is the line element directed along the current,
|R| is the distance from dl to the field point.
Expandina |R|™! in Legendre polynomials and integrating over the current

loop we find (Appendix A),

ﬂolb « s L ~ 1 A A
(14) = I ———— P. (n‘c) P (n-s) &
, A 2 n=1 c"*!n(n+l) " "
Isl<|c|

b is the radius of the loop

s is the field point

c is a vector to the loop

P;(n-e), P;(n/s‘) are Associated Legendre functions

35 is the azimuthal unit vector




Using s"P! (n-8)#s = ¥ x[P, (n'8)s"s], (Appendix B)

1) pb = P (n-¢) Ses]
- —— ! ——m—— Vv x[P (n-s)s s8].
A 2 n=l ™*'nns) "

The Taylor expansion for a vector function can be written

e (de)”
(16) £(d+r) = L £(r).
n=0 n!

A, is a function of s = d+r, where r is the vector of the field point with
respect to an origin at the center of the sphere and d is the displacement of
the center of the sphere from the axis of the loop. Employing the Taylor

expansion,
© (@9 4 Ib = P (n-c) ~
(17) A, = £ { I ———— WxP_(n-r)r"rj.
k=0 k! 2 n=l "*'n(n+l)

The displacement vector d has been chosen so that it is perpendicular to the
axis of the loop (d'n = 0). By the choice of the Legendre polymomial the axis
of the loop is designated along the z-axis. It is natural then to designate 4
as being along the x axis so that
]
(A% = (d—)*,
ax
In this case, a useful identity is [8, p. 361]
9 1
(18) - Pnrne:lno -— (n&n)(mn—l)l’"le“"”’ - Pm+1e1(n+1)0 tn-l.
9% n 2 n-1 . n-1

Also true is,

? )
— T = e_, vhich implies that d — r = d, s0
ox ox

, 1
(19) (@ V)P "' ™t = - r“'lt[(mn)(mn—l)P"—iei“"'1”-P:*ie“"‘“”]ﬂf"e“’r“d
2 n- - n




The important aspect here is that even after differentiation the basic form of
each term is preserved. Each term is either of the form

P:e“"rlr or P‘l‘e“"rld.
Since (d-v)d = 0, repeated application of d-V yields only more terms of
similar form.: This makes it possible to find a closed form for any power of

4-V operating on P r"r. The derivation is given in Appendix C. The result

is
d& k n!
(20) (d.v)kp °r = I (k) (-1) k--Pk—hei(k-z-Hrn-xt
" 2* m=o ® (n-2m)! n-k
k-1
. Kd k’{:l RS n! (c1)k-m-1phTInl kel g
2" me0 " (n-2m)! noked .

Using this result in equation (17) and the fact that d-V(9UxA) = Ux(d-VA) we

obtain, . P
| . A o
“ e fop b e P(nc) n 0 d 1 kn . n! .
(21)A, = Ux I — I (—=) — I (-1) " e—— )
2 n=1 ¢ "n(n+l) k=0 2 k! m=0 (n-2m)!
P::i"(n-?)e“k'“”r“'k(r+d) .
for |r|>c.

ITII. Calculating the total VECUTOI PULEBIILLIGL ilidius s wpeesso

The differential equations for the vector potential are linear so
solutions can be superimposed. Therefore linearly independent terms in the
harmonic expansion for the inducing vector potential can be separately matched
to boundary conditions to determine corresponding terms for the vector
potential inside the sphere. The terms can be recombined to give the total

vector potential inside the sphere.



As has been mentioned, all of the terms of A, are either of the form
A, [P (nT)e'™r'r] = A _r"xV[E (nT)e' ™t )

or
. -A“v::[r"l’:(n-?)e“’d]. .

The first are -recognized as vector spherical harmonics. The general solution

to Laplace’s ._.e‘quation (using only terms defined for all n-t) is

® n A
(22) A, =L LA _[r"+B " ' I{xv(Et (nT)e'™)).
N=0 mM=-n

The potential outside the sphere is a combination of that due to the current
loop and that due to the eddy currents in the sphere. The potential due to
the eddy currents must vanish as r approaches infinity so A A must be

~-n~1

completely determined by the current loop. There are no r terms in the
vector potential of the current loop so B , is completely determined by the
eddy currents. Immediately A = is known.

Likewise, the general solution to Helmholtz’s equation can be writtin

b n

AN imé
A = L E{C_I,  ,(kr)+D K, (kr)}rxVe (n-r)e

Nn=0 m=-n
where
I (kr) = i™"J (ikr)
K (kr) = 1/2mi"" (3 (ikr)+iY (ikr)])
J, (ikr) is a Bessel function of the first kind

’ J, (ikr)cos(ikrm) - J__ (ikr)
Y (ikr) =

sin(ikrn)

The function K _, ., is singular at the origin, which is within the sphere, so

DM-O for all n,m. So

(23) A = £r % 1. (ko)rxW(P}(n-T)et™),

n=0

10




The boundary conditions are met if (Appendix D)

(2n+1)a”" 2/ %a

(24) C,, =

| qu-.uz (ka)
A simila_r.process is used for the terms of the form A _ v_x(P:e"’r“ex ).
For these terilis, the curl is taken first and is broken up into its cartesian
components. From Appendix E

A K(EL (0 D)e M e, ) = A, ((mn)EL_, (n-D)e " e, -

1 - - - -
- [(mn)(mn—l)P:_i(n~/r\)e““ LIt pn 1+P:t;(n-’r\)e“'“”r“ le,}.

In cartesian coordinates V' A=V'A ex+v2Ayey+v2A' e, . Each component of
Helmboltz's vector equation is an identical Helmholtz scalar equation. From
[p. 375] and the arguments stated for the vector spherical harmonics, the

general solutions for A, and A are

(- -]
j -n-1 Ny img s
Az - I An;(r"-q-BMr n )P:(n.t)e "t , j=x,y,z
n=0

o )
Al = pcd Y2
[-] nm

n=o

ime¢
w12 (KOVEL (n-D)e

The similarities between tnese eyuaiiuiis wis wyuscoInZ (22} 2nd () are
obvious and thus

(2n+1)a"'1/2A:m

kI, (k)

The complete expression for the vector potential inside the sphere is

11




p b e ® & k n!

A 2 ne=l" keo 2*k! me0 *"  (n-2m)! nok+l/2 n-k
k-2 A, di(k-2m)¢ k—2m A di(k-2m) ¢
(Vpn_k'!n-z)e )xt-o-dIn_k_l/z(kr)Cn_k_l[(n—Zm)Pn_k_l(n-r)e‘ “te

i - camet A _ _
_ _; ((nj?m)(n-Zm-l)P:_::xin-r)e‘(k'z"l)'+P:_:::tn-?)e’(k 2.+1)'Fﬂ)]}

where

P! (n-C) (2n+1)a""1/2

An . ————, cn =
n+l

c  “n(n+l) kIn_l/z(ka)

IV. Calculating the average power dissipated in the sphere

For a sinousoidally time dependent current density, the average power
dissipated is

1
P= — J-J' Jav. [3 p. 369]
20

o is the conductivity.

The factor of one half arises from the time averaging over one period.

Teina smiation (9)

J = -id’m,
the average power becomes
W o
P = A*-AdV.
2

The displacement d of the center of the sphere from the axis of the loop
is small, so only terms to first order in d will be considered. This can

be justified by examining equation (25). Each term of A, is propotional to

k. n-k-1/2 ~k-
dankl/ d ankl/z

"
—

|

]

I
S

=

|

i

|

e s 4 . e st e e e e e

cn+1 c Cn—k+1

12




The loop must be outside the sphere so a<c and d is assumed small so (d/c)is

small. From equation (25), to first order in d

1,0 ”°Ib y ~-1/2 A

(27) A = I Ar /{1, (k) C VB (n-r)xr

) - 2 n=]
-1,_, . (kr)C,, d[V(E._, (n-T)cosd)xr - nP,_, (n-T)e, - B, , (n-T)singe, )}
Using -n{n-1)F"}_ =B _, (7, p. 560)

e1¢+e-10 eﬂ_eﬂ
and cos¢ = ———— ; SiNg = —mm88—
2 21

Study of equation (27) reveals that the angular part of the integral
(equation (26)) to first order in d has terms of the form

(28a) ¢ (VP (n°T) x 1) + (VB (n-T) x r)de

(28b) § (VP (n°T) x ) - (VIF,_, (n-T)cosé] x r)de

(28c) § (VB (n+%) x 1) - (1P, (n-T)e, + B}, (n-T)sin¢ e, )do

These are evaluated in Appendix F with the results

$ (VB xr) + (V[P]_ cos¢] x r)de = 0

¢§ (VP_xr) - (P, .e + Pi_ siné e;)dQ = 0, and

1-17y 1
4nn(n+l)
§ (Vant) . (VPlxr)dQ- —_— 8:.,1'
2n+l

Thus, all of the first order terms vanish and only the zeroth order

contributes to the power dissipation. The expression for the power is now

Pe —2—— LA lc 1*r 1 (kr)|c’dr .

n

8 n=1 2n+l

c.v¢4u>2u°I°2b2 L 24an(rx+l) a
n+l1/2

o
Following the logic of Sonnabend (see Appendix I)

eX

— ; I-a.

X) ~ ;72
(2nx)

In+1/2(

13




, , §*a’" (2n+1)°
so lenl® |1, ,, (ko) |“rax -
o 2
" 2 )
where § = (——) is the skin depth . . *
C uwe
Thus
' afp nS 1B e ,
P= I A “(2n+1)n(n+1)a’"

4 n=1

n ’b’ = [P (n-€)|? (2n+1)a’"
L

o8 n=1 n(n+1)c2™*?

V. Calculating the force on the sphere

The force on the sphere due to the external magnetic field is

F = [axBav = Re {-iwo [A, x (Vxa,)dV)

where A, is the total vector potential inside the sphere and A, is the vector
potential due to the current loop alone. The interaction between the eddy
currents and the field of the eddy currents is of no interest. The sphere
cannot move itself and thus that force must be negated by internal stresses
about which little is known.

Evaluating VxA, to first order in d, there are terms of the form
(Appendix H):
zeroth order

n n-1, 2 n-1_. LA

(29a) 9x(Vr'P xr) = n(n+l)r "B r - (n+l)r "sin6p ©
. A dP;(n-?)
where P (n'r) = =
d(n-r)

first order

14




(29b) Wx[r" *V(P_ cos¢)xr] = n(n-1)r" ’P._ cos¢r
, " ?sin¢ ~
-nr“"sineP:_lcos¢‘3 -n———Pp %

5ind

3 n-— 2 1 A A sin¢ A
[-(n-1)P,_,cos¢ r + sinBP!6 + P ¢].

(29¢) v;[V(r"P;)xex] = r

sine

The terms to first order is d of A, are found from equation (27).. These
are of the fo;m: ‘
zeroth order

(30a) rY/2C,1,,, ,,(kr)VB xr = /2C 1, , (kr)sinE ¢

first order

-1/2 !
(30b) -r c;_lxn_l/z(kr)V(P;cos¢)xr = siné
_r_l/z(C;-1In-1/z(kt)ISin9P5—1c°s¢ g - Pi‘le]
sin®
-1/2
(30c) r Coc1ln-1 o (kr)n P _ e
-1/2 ! i
(304) r C“_lln_l/z(kr:)Pn_lsm¢ez

From the cross product of the zeroth order terms of A, with the zeroth
order terms of UxA, the zeroth order terms of the force are obtained. From

results in Appendix K the force to zeroth order, averaged over one period of

Slhn mirrant o

(-4
o -u,1.°bn L P (n-C)P, | (n-C)a’"*?
= n= 2n+3 €, -
2 2 (n+l)

This is identical to the force, found by Sonnabend [p. 54], on a sphere on the
axis of the loop.

The first order term for the force is found by taking the cross product
between the zeroth order terms of A, with the first order terms of A, and the
cross product between the first order terms of A, and the zeroth order terms

of A, . The calculations are in Appendix J. The results is

15



-ng I°b’d e { |B! (n-€) |*a**"* (n® +2n-1)
— L

4 n=1 c¢***2n(n+1)

1 A 1 A, 2n+1
P (n-c)F_,,(n:Cla P+ (n+l)

+

-

™ (n+3) ‘ .

The zeroth o;&ér force is one strictly along the axis of the loop, and the
first order f_brce is one strictly in the direction of the displacement from
the loop. Aﬁ first glance the first order force appears to return the sphere
to the axis of the loop, however evaluation of the summation should be done to
be sure. The first term in the summation is definitely restoring because

|2l (n-C) |*>0

2n-1
a
and it should dominate because of its — dependence versus the other terms
azn+2 C?
JETYY dependence.

VI Calculating the torque about the center of the sphere

The torque is found from

T = }r x (J x B)dv.

J x B was calculated to first order in d when calculating the force. Finding
the terms of r x (J x B) is then trivial. Calculating the torque then becomes
simply a matter of trudging through the integrals as was done in calculating
the force. This is done in Appendix L. The results are that there is no

torque to zero order, and to first order the torque is

o 1w°12b2d ® [P,l‘(n-’é)az“’1 Pi(n-e)P;ﬂ(n-e)az"“(2n3+3n2+3n—2)J
--e ——— I +
¥ 4 n=1 ¢t 2™ 2 (n+1) (n+2) (2n+1)

Thus the axis of rotation is perpendicular to the displacement off axis. For
a displacement in the opposite direction (d + -d) the torque changes sign.
This means that as long as the sphere stays near the axis of the loop, the

angular acceleration will average to zero.

16




APPENDIX A

From equation (13) the vector potential of the loop is

H, % dl
. A an IR|
1 v
Expand ™ in Legendre functions. ’
R|
1 © & ~ A Con
—|R| - nfo o1 P (s:c), [7,p. 539]

c is the vector to the loop, s to the field point. Functions of ¢ can be
separated from functions of s by using the addition theorem for Legendre
functions in terms of spherical harmonics. Let n be the normal unit vector to

the loop define the z-axis.

~ ~ A D (n-m)! ~ ~
P (s-c) = P_(n-s)P_(n-c)+2 L P (n-8)F (n-c)cosm($_-¢, )
m=1 (n+m)!

d"
where P"(x) = (1-x*)/? — P (x). [7, p.582].
dxlll

For the purpose of simplicty, the coordinate system can be defined where ¢ =o.
Since c=|c| is constant over the loop as in n'c, the line integral amounts to

an integration over P -
i1
} dl = r bd¢(—sin¢ex+cos¢ey)
(o}

Using the following orthogonality relations,

2w
J sin¢ cos m¢ d¢ = o [7, p. 435]
o
i -} myl
cosé cosmé dé = N3, ., 8.0 =t ...}
o

17




ulp o P:(n'e)

Al = L n+l

2 n=1 ¢

S"Pi(n‘ﬁ)e .
n(n+l) Y

The coordinates were fixed relative to s when ¢, was set to zero. This
can be "unfixéd" by letting e = 3', and the coordinates are again independent

of 8. Thus

. ﬂolb o Sn 1 A1 ~A A
- I P (n-c)P (n*s)¢ .
A 2 n=l Ma(n+l) "” " y

18




APPENDIX B

To see that s"Pi(n-;);‘ = v [P_(n-5)s"s], first note that

~ a A A
V(s“Pn(n-'s\)) - ns“'IPn(n-'é)s + s"! P (n-s)e,.
. 20,
From the chain rule,
| 3 ,\ ? _ 3(n-B)
+ —— P (n'8) = — P (n-s)
96, A d(n-s) ae.

= -Pn' (n-'s\)sine' = —Pi(n-g).

sxs=0 and sx/é'-s% , SO
v (s"P_(n-8)) x 5 = "P} (n-5)%,
V.x{Pn(n-g)s"s] - vs[Pn(n-’s\)s" Jxs + Pn(n-/s\)s"vsxs
and V. xs = 0. So,

v, x [P (n-5)s"s] = V_[P_(n-5)s" Ixs = s"P! (n-5)%, .

19



APPENDIX C

Using equation (19) with m=o,
2

(a-9) (Pnf“r)- T x:""l[n(n—l)l‘-‘n::e'-“-IP“_1

i¢ n
. Ir + Pr d.

Repeating this yields
. 2

(d-V)z(P;f“t) - ---r"'z[n(n—l)(n—Z)(n—3)Pn::e'“’—Zn(n-l)l’;‘:_2 + P;_zeu’]t

4 .
4 — r"’1[n(n-l)P;ile"’—Pnf1e*’]d
d n!

- (—)1r2 ) (-1)27"pl Imet (2m2m
2 m=0 " (n-2m)!
d 1 n!
+2(—)t (1) (-1)>m el N

n-2+1

mo " (n-2m)!

The pattern holds for further differentiations with the result

a k n! -
(d.v)k(P r"r) - e T (k) (_1)k--Pk 2-euk-2-)ol,n-kr
" 4 m=o " (n-2m)! nok
kd"! x n! .
+ (k—l) (_1)k—m—1 P:-i+11tn-k+1 d.

2! mo ™ (n-2m)!

20



APPENDIX D

Taking each term independently, A | _.= A | ., implies that
(D1) (A (48,0 " ") exvEe'™ | «lc 71, (kr)exVEe' Y|
rxVE e""* can be cancelled so, .
(D2) A _(a"4B 2™ ") =C a'’1 . (ka).

The next boundary condition is that WxA, | _ = WxA |r=a. Taking the curl of
equation (D1), cancelling the angular dependence and using equatioﬁ (F2)

yields

), = wxIc % (kr) |

n
Vx[An_(r +Bn-!‘ n+l/2

r=a r=a’

Carrying out this differentiation in spherical coordinates and equating

components yields.

(D3) A (na"—(n+l)B a""") = C {-1/23°7°1 . (ka)+a '/?k1’ ., ,(ka)}.
From (3, p. 98]
n+l/2
(D4) 17, ,(ka) =1, ,(ka) - e Liv1/2(ka).
a

Subst1tut1ng this into (D3), solving for B in (D2) and then solving (D3) for
Con in terms of A Yyields

A a""!'/?(2n+1)

kI

C =
nm

(ka)

nll’

21



Appendix E

] ]
x(r"Ple'™te ) = — (r"Fle'™! Je, - — (r"Ple*™ e
9z y
From (8, p. 361]

a3

i
— "Ple'™*.a — [(mn)(m-m—l)P":r"'le“"l"+P“1t"'1e“'””].

ay ' 2 n-~ n-1
'} ,
— "Ple!™*ancoser” "' Ple' "t+sin’ o] " le! "
-}
- (mxn)P:_lr"'le“". (using equation (L17))
Thus,

i
ox( r"P:e*'"e‘ )=(mn) P, r“'le“’ey- — [(m+n) (m+n—1)P::1 "Tlet (ALY
2

1

m+l n-1 i(m+l)e
+P _,r e le, .

22



Appendix F

To evaluate (28a) and (28b), refer to the theory of vector spherical
harmonies which are defined in {9, p. 211-214] as

- Sts (2n+1) (n-m) !
RSNV xV{(-1)"[ ]1/2P:e1.,} .
[n(m+1) 1/ dn(n+m)!
Thus, ’
dm(n+l)
VP xr = -i [______]1/2
" 2n+1 Xoo ®
and
VP,_jcosé xr = 1/20(P,_je''-1(1+1)F]_ €] xr
-i 4n 2
= —— (———)"""1(1-1)( X, ).

The vector spherical Harmonies satisfy the orthogonality relation

Jx‘;"‘*’-’d" =8,,8,,  [9,p. 211)

It can be immediately seen that (28b) vanishes. To evaluate {28a)},

[ n(n+1) 1,2 1(1+1) I/ZJ .
(VP _xr)+(VP, xxr)dQ = -4n[ ] ] «X, d®
!} " ! 2n+1 21+1 %o X1

n({n+l) 1(1+1) .
= 4n] 12 ) J-x X de

2n+l 21+1
4dm(n+l)

- — 3§,

2n+l1

To evaluate (28c), the following relations are useful:

oP

n .

¢
C1e)

i) VP xr = ~
n

ii) 3 ‘e = cos¢

iii) $-e =0

23



n

iv) ‘[ cos¢dé = 0
(o]

Using i), ii) and iii), (28c) becomes

DA . ap -
1 n
I (Vl",‘xt)-lcsvll’l_1 + e P, sin¢]dQ = J- ” 1p, _, cos¢de

which, using iv) vanishes.
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APPENDIX G
The following argument is from (1, p. 53].
® (e"=(-1)"e " (n+l)!

1 (x) = (Zu)-1/2 L
n+41/2 1=0 :|,|(n--1)l(--2x)1

It has already been assumed (assumption 5 of the introduction) that the skin
depth 8 is sm_éll' compared to the radius of the sphere. This means that the
current densi;:y will be negligible except when r~a. 1In the equati;m for the
current density the argument

x=kr=(ip wo)'/?r = (2i)'/? L (1) —.

8 L3

But for r~a + x ~ (1+i) a/8 is a large number, so the summation e* dominates
over e *. (-2x)"! goes quickly to zero as 1 increases, so the l=o term of the
summation dominates. Thus

I, (ko) ~ (2nkr)7' /%",
Remembering that most of the current density is at r~a and that over small
variations in r, I=-.+1,/z(kr) will fluctuate much more than small powers of r, it
is reasonable to let all of the functional variation lie in the exponential
and set r=a in the radial integral for small powers of r. Thus

- NN -2 2 o~ 2
(Zn'H.) a LI - n\blrv.l.,

a a
2 2 2kr
Jolcnl IIn+1/2(kt)| rdr ~ J.o W e dr = "

25




APPENDIX H
Zeroth order terms of A, have the form V(r“Pn )xr, and first order terms are of

the form V(r"Pn)x e, and V(" !p! cosé)xr. So the terms of VxA, have the

form -l
x [9(£"B )xr], Wx[V(r" 'R !, cos¢)xr] ’ .
x[V(c"P )x e ).
For a function £(r) Y (©,4) where V' [£(r)Y(6,¢)]=0
Ux[V(EY)xr) = (£-9)V(EY) — [V(£Y)+V]r + (V-r)9(£Y) - [V (£Y)]r
| = (£-9)9(£Y) + 20(£Y).

For f(r) = ",

ay . ' oy

V(EY) = " ivr + 7 — @+ _— ;
06 sin® ¢
A , A oy
and (r+V)9v(fY) = n(n-1)r"~" ¥r + (n-1)r"”" — @ + (n-1) — .
36 sin® 3¢

Using these results,

Ux{V(r"P_)xr] = ﬁ(ml)r"'l';’n? - (n+1)r" " Ygined P’ e
and
wxIV(" P | cos¢)xr] = n(n—l)r"'zP:I_lcoscb?—nr"'zsineP;_'lcosw
" ?sin¢ A
-n — P__, ¢
sin®
similarly,
Ux[V(EY)x e ] = (e -V)V(£Y) - [V(£Y)-Vle, + [V-e, ]VEY - V' (£Y¥)e,
9
= — V(£fY).
ax
50,
9 . L ~ ~ Ssiné
Wx[V(r"P_)xe ] = —9(r"P ) = " ‘[-(n-1)P___ cosér + sin®@ P’ © + —— P_¢].
n x n n-1 n . n
ox sin®
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APPENDIX I
Using (29a) and (30a), the zeroth order terms of A, x (VxA ) have the form,

r1/3C,1,,, ,, (kr)r' T [1(1+1)P, sin6P, ' §xT-(1+1)sin6P] sineP, * $xO).

A A

XL = o= -sinGe  + cos@ cos¢e, + cosO sin¢e’.
-#x8 = T = cosée, + 5in® cosee, + 5ind sinte .
Performing the angular part of the integral.
c .

Use sin@ P ' = P:, §in6 P, = — [P1+1 - Pl_:] (from Appendix N)
21+1
2R x
and that I sin¢d¢ = JJ cosé¢dé =0, Then
o o
J’ N -4nn(n+l) [n(n—l) (n+l) (n+2) }
(11)] 1(1+1)P, sin6P_'6dQ = 8 - ——— 8 . .]e .
! " 2n+1 2n-1 ot 2n+3 nel-ije
Then use sinép ' = Pi , sin 6P’ = P., and
! ! 1+1)p, ! find
COS6P; = ((1+1)p, _, + 1+1] to fin
21+1
R 4m(n+l) [(mz)2 n(n-1) ]
(I2) |sin6P ’sinéP '1(1+1)rdQ = S . .+ 8 e
I ! " 2n+1 2n+3 1=t 2n-1 noled e
AddIng (Lll) ana (1<) yitlus e cogussl 727 ~F tha intearal
~ , ~ A4m(n+l)(n+2)
[1(1+41)p, sine B '6 + (1+1) sinep, ' sino B’ T = e &,

Using the results from Appendix G, the radial part is

§(2n+1)a’"*!?
(kr)r"r dr ~ .
(1+i)k

a -1/2
I n n+1/2

Putting in the necessary constants and averaging over one cycle yields,

-, 1°b’n = P (n-C)B, (n-C)a"""!
= z e o
ave 2 n=1 ™3 (n+l) ¥
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APPENDIX J
The cross product between (29a) and (30b) yields

-1/2 1-1
(J1) r Cn-IIn-l/z(kr)r {

-

. -5ind e,
a) -sin6P ' cosél(1+1)P, cos® cosé e,
, cos® sin¢ e

siné

-sin¢ e
- |

P._, 1(1+1)P, [

gine "7* cosé e

2.1, coso e,
c) -sin ePn_lcos¢(l+1)P1' sin® cosé e, l.
sin® siné e,

Similarly for (29a) with (30c):

-1/2 1-1
(32) ¢ c In_l/z(kr)r {

n-1
cos® e,
a) nPn_ll(l+1)P1
-5in® cos¢ e,
r—sine e, ]
b) -nP, _, (1+1)sineP,’

[—cose cosé¢ e‘J

For (29a) with (30d)

=172 1-1
(33) r Coo1Tn_y o (kr)I {

X sin® cosé e
a) P’n_lsin¢1(1+1)P1 .
-5ind siné e,

cosO cosé ey
b)-B._, 5in6(1+1)sineP] [ ]}.

-cos© sin¢é e,
For (29b) and (29¢) with (30a)

172 1-2
(J4) r CnIn+1/2(kr)r {
- -5ind e,
a)(1-1)"p,_, cos¢ sin6P ’ cos® cos¢ e,
cos® sin¢ e

28



2.1 cosO e,
b)sin ePl'(l—l)Pn'cos¢ sin® cos¢ e,
cos® sin¢ e
From the ¢ dependence, it can readily be seen that only the x-~components of
these terms will survive integration.
Taking (J1) first and completing the angular integration, use the
following identities:

i) Itdéz§d¢ - f;in2¢d¢ =1

: . 1’ 1 : 1
ii) -sinBcoséP, , + — P _, = n(n-1)P _.-(n-1)sinéP_ _,
5in®
i1i) sin’ep'’ 1 21, 2.1
sin6p ', = —— [-(n-1)°F, +n"P _,]
2n-1

1
iv) sinePI' =P .

Then,
1 2 Sin2¢ 1 3 1 2
I[-sinePn111(1+1)cose cos"¢P, + —— P _ 1(1+41)P -sin 6P ' (1+1)P, 'cos” ¢]de
sin®
' 1 1 251, 2.1 1
-nj[(n-l)nP;_z1(1+1)Pl-(n—1)sin€E;_11(1+1)P1- E;—I[—(n—l) P +n"P_ _.])(1+1)P, ldcose
Use sin® P, = -~ [P1+i - Plill and this equals
{n (DB, e (72, - B
nn(n-1)Pp _1(1+1)P, - (n-1)P , — [P -P
3 n-2 1 n-1 2141 1+1 1-1
1 2 2 2 1 1
- —— [~(n-1)’n-1)’F] + n’ B ., }(1+1)P, dcose.
2n-1

Using the orthogonality relation for Legendre polynomials, this simply equals
2nn(n+1)(n-1)*

2n-1

29



To do the same for (J2) use,

1
i) cos® P, = — [1P + (1+1)P, . 1]
21+1 -1 141
1
ii) s1n eP ! & [-1(1+1)P1+1 +1(1+1)E3 1]
" 21+1

and orthogona;'ity to find that
}(n&;_ll(i+1)91cose + nP__, (1+1)sin’ep, *)de

4’ (n+1)8,
) 2n-1 )
For (J3) use
. 1 1
i) sin@ P, = EI—I [P1+1 -P_,]
1

ii) sin® coseP,’ = [(1+1)p,}, + 1P} ]

21+1
to find that

v\zA + D 1 s{nn

-

Q

0s6(1+1)P, * sin’ ¢)de

4nn(n—1)(n+1)8n'1

Lili™ 4

for (J4) use

1
i) sin® cos@ P’ = —— [(n+1)P.} + nP ! ]
2n+1
ii) sinop_ ' = P
2 1 1
iii) sin"ep;!, = ——— [-(1- 1)? P +1° P1 51
21-1
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to find that
{1(1-1)*F]_, cosesinep; cos’ ¢ + sin’ ¢8) " (1-1)E,’ cos’ ¢)de

2m(n+1)? (n+2)

s . ..
zn+1 n,1-2 ’ <
(J1), (J2), (53) all have the same radial terms and constants in the total

force expression, thus their angular terms can be added together. .

+ +

n(n+l)(n-1)* 2n’(n+l)  2n(n-1)(n+l)
2n [ ] Gn L
2n-1 2n-1 2n-1 '

2n({n’ + 2n-1) n (n+l)

2n-1 net
Because of the Kronecker delta, the radial part has the form

“2m-1 (1+i)(r-a) 82 (2n-1)a’""?
—a*""" exp |—- dr =
., k 3 2i

The radial part of (J4) becomes

[a 2n+1

. (1+i)(r-a) 8 (2n+1)a®"*!?
a’™*'exp dr

do ok

8 2i

Putting all of this together with the appropriate constants and averaging over

one cycle yields the first order term of the force.

-1, 1,°p'd ’p'a = [lp '(n-¢)|*a*""! (n*+2n-1) Pl (n-C)F,}, (n-€)(n+1) ]
+

2n+zn(n+1) c2n+4(n+3)

F 1

ave
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APPENDIX K

For the zeroth order part of the torque, take the cross product of r with
(J1) and (J2). For (J2), IXT = 0, so that integral vanishes. For (J1), %0 = ¢

~ 8O, *

(K1) £ x [1(1+1)8, sinep} &30 = r/1(1+1)p, sinee! §de.

But, ¢ = -sin¢ e, +cosp e

and rsirwdtb - r'cos¢d¢ = 0.

s0 (K1) vanishes also. Thus there is no torque to zeroth order in d.
The first order terms can be found by taking the cross product with r and

equations (J1), (J2), (J3) and (J4). Noting that

IXr = O

rx0 = ré

rx$ = -ré

'ixe! = -siné sin¢ e + cosé e

fxey = -cos® e, + sind cosé e

Txe, = -sin® cos¢ e, + sind sin¢ e,

These terms are readily found. The cross product of r with equation (J1)
yields

(k2) r'/?c .1 (kr)c*{

n-1"n-1,/2
-sin¢ e,
a) -sin6p’ ' cos¢l(1+1)P,
cos¢ e
4
sin¢ -5inod e,
b) P._ 1(141)p cos@ cosé e
sin@ cosO sin¢ e,

The cross product with equation (J2) yields

31



(K3) r'i?%¢c

n-1 n l/z(kr)r {

-sigx © cos¢ sin¢ 4
a) nl>n_11(1+1)1’1 cos‘® + sin’@ cos 5 e
~c0sO sinbd siné¢ e,

. -Cog0 sind sin’ ¢ e’
b)-nP (l+1)s1n9P' smze sin¢ e,
cos” © cosé e

For (J3)

~-1/2
(K4) r cn 1 n 172

(kr)r {

X -cos6é sin® cos¢ e,
a) P _,sin¢l(1+1)P, -co;g sin6 sin¢ e
sin“6 e,

' —cosze cos¢ e,
b) —Pn_lsin¢(l+1)sineP1' -cos“ O sin¢ ey
sin® cos6 e

Finally, for (J4)~
(kr)c' ™y
-siné e:]
}.

(1-1 )2 P _1 cos¢ sineP': [
cosé e,

-1/2
(KS) r CnIn+1/2

Using
0= r“sin¢d¢ = r“cos¢d4> = r“cos¢sin¢d¢ = r“cosz ¢singdé = r“sin2 ¢cos¢dé

ONiy tNe Y-COMPONENLS BULVAVE wie snscigio—il 27727 4 T avalnate the anaular

part of the integral for terms of the form of equation (K2) use

i) r“ cosz¢d¢ = = rﬁ sin2¢d¢

-]

. cos® L
ii) sin@ P ' - —— P | =-n(n-1)P _,
siné
2
iii) P _ P/ dQ = — § .
I 2n-1 "M
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Then integration of the angular part of (K2) yields
2n

2 2
n“(n-1)"8 _
2n-1 ot

To evaluate the angular part of (K3) use
r sir‘x’-, - r“ cos’¢ = 1

to eliminate the ¢ dependence. The angular part being integrated is then
2nnP__ 1(141)P, cos’® + mnP,_, 1(1+1)P, sin’® + mnP, _, (1+1)P; Sin’e cose.
Using

cos6P/ = 1P, + P,/ this becomes

2mP, _ 1(1+1)P, + mP__, (1+1)P, ' sin’e.

The first term can immediately be evaluted. 1It’s integral is

\ 4m? (n-1)
[2mE, _, 1(141)P, dcose = S
Using
, 1(1-1)
sin ePl_'l = [P1—2 —Pl 1,
21-1
the second term yields
2mn? (n+l1) (n+2) 2mn’ (n-1) (n-2)
%.,1-1 ~ . “n,1+1

(2n+1)(2n-1) (2n-3)(2n-1)
Doing the same with (K4). Use
i) P,', = -1P, +cos6P/
s 1 1 1 1
ii) cosép _, = E;--I ((n-1)P " +nP__,]
s s s . 1
iii) sin®é P1-'1 =P _,.
Integrating, the angular part yields
2nmn(n+2) (n-1) (n+1) 2nn’ (n-1) (n-2)
8

+ 8 .
' (2n-1)(2n-3) '

n,l-

(2n-1)(2n+1)
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Equations (K2), (K3), (K4) all have the same radial dependence so their
angular parts can be added. This yields
2m(n+1) (n+2) 2nn’ (n-1)(n+1)
8

n,l-1 8n,1+1 °

. 2n+l 2n-1

For (M5) use: .
sinePu._'_' -P*'.
The integral then yields

2m’ (n+l)
8n,1-1 °

2n+l

Integrating the radial part of these terms is similar to that integrations

done in finding the force.

I Cooy ooy o (kEVE T I7H 2ar -J' c I (k£)e®*?71/% dr for § terms

n-1"n-1/2 1-1

= j (3,,_11,,_1/2(lu:)r"“““2 dr for § terms.

1+1

ne1,2 (kr)r"*27/2dr for (M5) terms.

andf (o (kp)ct*171%gr -I c I

n+l/2

Again, using the same approximations as were used in finding the force and

power,

£19n_11a2R*E

c _.I_. (ko)"*?"%gr -
I: n-1"n-1/2 (1+i)k

a n+1-1/2 8(2n-1)a*""
C._ I, (ko)™
L, Goesoes | (1+1)k

. ne2-1,2 8(2n+1)a’"*?
CI,, (k)"
L n+l/2 (l+i)k

So, the final expression for the first order term of the torque is

- nu I°b’d o [P (nc)P  (nc)a®™?'  P(n-c)P,, (n-c)a®"** (2n’+3n%+3n-2)
r.- b4 o o g n n-1 + n n+1
4 n=1 i ™3 (n+1) (n+2)2n+1)
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APPENDIX L

From [7, p. 541]

(Ll) B, 7(x) = (n+1)P, (X) + xP_ '(x)

(L2) BI_ (x) = -nP, (x) + XB, ’(x) e
(L3)  (1-°)5,"(x) = 0B, _, (x) - mxB, (x)

(L4)  (1-x7 )P, ’(x) = (n+1)xP_(x) - (n+1)E,_,, (x)

From [3,p. 162-3)

15) B, (x) = (mmel)(1-x")*/2EN(x) + xB)*T(x)
(L6) P:::(X) - P:ti (x) = (2n+1)(1-%? )1/2P:(x)

m+ 1

(L7)  Eo. (x) = (mn)(1-x")"?Fl(x) + xE7*} (x)

(L8) P **'(x) - 2mx(1-x*)"*/?PN(x) + (mtn)(n-m+1)E] 7 (x) = 0
(L9) (m—n—l)P:H(x) + (2n+1)xP:(x) - (m+n)P:_1(x) =0

(L10)  (1-x*)*/2P0" (x) = -mx(1-x")""/ 2L (x) + B}* 7 (x)

(L11) = -1/2(mn) (n-m+1)E, ' (x) - 172807 (x)
(L12) = mx(1-x* )72 PN (x) ~ (nm) (n-m+1)BD T (x)

(L13) 2m(1-x*)"1/2P"(x) = P°71 (x) + (men-1)(m+n)P]_ | (x)

(L14) (1-x*)P0' (x) = mxEl(x) - (mn)(n-m+l)(2n41)7 [B] , (x) = B_, (x)]

n+l
(L15) = (n+l) x P7(x) - (n-m+1)P.  (x)
(L16) = (2n41)" [(mn-1)nF", (x) + (n+1)(men)P]_, (x)]

(L17) = —nxP’ (x) + (mn)PS_ (x)
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APPENDIX M

Another expression for the current density in the sphere

Ludwig Hannakam found an exact integral form for the eddy current density
in conducting.solid sphere in the presence of an alternating current loop of
arbitrary shape or orientation to the sphere. He first cor'tstructe;l a surface
by drawing libes through the center of the sphere and the current loop. He
then showed that the vector potential due to the loop can be calculated by
considering radial magnetic dipoles on the constructed surface. The problem
of a conducting sphere in the presence of a magnetic dipole of oscillating
dipole moment has a known solution. He partially completes the integral over
the surface leaving only an integral over the current loop. His solution is

itwel e« 2n+l 1

J = L fn(kr)Fn(r)
4n n=1 n(n+l) o,

Y7,
where a = (— -1)n £ (ka) + kaf _, (ka)

”o
2 1/2
1/
£, (kr) = (—)"°1 ,, ,(kr)
kr
a . ds ds, .
l'n bad ,L\ AJ‘; { ;n;(i\c - € ::‘n'(:—:‘?c'\ * ,'\c!l:c v - \.r‘pn"{’r\.,r\v)l
r r r
c < €

a is the radius of the sphere

r, is a vector to a point on the current loop (source point)
r is the field point in the sphere

ds_, is a line element on the current loop

t

I= Ioei" is the current in the loop
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